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Summary
Oat ranks sixth in world cereal production and has a higher content of health-promoting

compounds compared with other cereals. However, there is neither a robust oat reference

genome nor transcriptome. Using deeply sequenced full-length mRNA libraries of oat cultivar

Ogle-C, a de novo high-quality and comprehensive oat seed transcriptome was assembled. With

this reference transcriptome and QuantSeq 30 mRNA sequencing, gene expression was

quantified during seed development from 22 diverse lines across six time points. Transcript

expression showed higher correlations between adjacent time points. Based on differentially

expressed genes, we identified 22 major temporal co-expression (TCoE) patterns of gene

expression and revealed enriched gene ontology biological processes. Within each TCoE set,

highly correlated transcripts, putatively commonly affected by genetic background, were

clustered and termed genetic co-expression (GCoE) sets. Seventeen of the 22 TCoE sets had

GCoE sets with median heritabilities higher than 0.50, and these heritability estimates were

much higher than that estimated from permutation analysis, with no divergence observed in

cluster sizes between permutation and non-permutation analyses. Linear regression between

634 metabolites from mature seeds and the PC1 score of each of the GCoE sets showed

significantly lower p-values than permutation analysis. Temporal expression patterns of oat

avenanthramides and lipid biosynthetic genes were concordant with previous studies of

avenanthramide biosynthetic enzyme activity and lipid accumulation. This study expands our

understanding of physiological processes that occur during oat seed maturation and provides

plant breeders the means to change oat seed composition through targeted manipulation of key

pathways.

Introduction

Oat ranks sixth in world cereal production (USDA, 2019) and has

a high content of health-promoting compounds in comparison

with other cereals. Historically, oat was used primarily as animal

feed (Hoffman, 1995), but recently it has been increasingly used

as a human food because of health benefits associated with

lipids, functional proteins and dietary fibres such as b-glucan
(Rasane et al., 2013). Oat also produces unique phenolic

compounds known as avenanthramides (Avns), which have been

reported to modulate signalling pathways associated with cancer,

diabetes, inflammation and cardiovascular diseases (Tripathi

et al., 2018).

Despite worldwide production of this nutrient-rich food,

genomic studies in oats have lagged behind other cereal grains.

A robust and comprehensively annotated oat reference genome

is not yet available, and a limited number of oat transcriptome

analyses have been published. Differential gene expression (DGE)

analyses for salinity stress tolerance (Wu et al., 2017) and

responses under phosphorus deficit (Wang et al., 2018) have

been conducted in seedlings and roots, respectively. The first de

novo seed transcriptome assembly was generated by Gutierrez-

Gonzalez et al. (2013). However, this version of the transcriptome

included only 412 of 1440 (28.6%, Table S1) complete BUSCO

plant genes (Waterhouse et al., 2018).

Investigation of the transcriptome through time is useful for

understanding physiological processes occurring during seed

maturation and for conducting genetic improvement. Much

effort has been made to understand biological processes under-

lying observed temporal gene expression patterns, including

transcriptome studies in maize (Li et al., 2014; Yi et al., 2019),

wheat (Li et al., 2018; Wan et al., 2008) and barley (Zhang et al.,

2016). However, in each case, only one cultivar was examined,

which may reflect genotype-dependent or genotype-specific
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results and thus may have limitations for plant improvement. To

date, no global/temporal gene expression studies of developing

seed have been conducted in oat.

Analysis of Avns and lipid biosynthetic genes through time can

facilitate an understanding of their metabolism. Three genes

encoding 4-coumaroyl-CoA 3-hydroxylase (CCoA3H), caffeoyl-

CoA 3-O-methyltransferase (CCoAOMT) and hydroxyanthranilate

hydroxycinnamoyltransferase (HHT) were cloned by Yang et al.

(2004) and are key genes involved in Avns biosynthesis in oat

(Collins, 2011). Oat grain has higher oil content than wheat or

barley (Bana�s et al., 2007; Liu, 2011), and, unlike other cereals,

the majority of oat lipids (86–90%) are found in the endosperm

(Bana�s et al., 2007). However, oat lipid biosynthetic genes have

yet to be cloned, and neither Avn nor lipid biosynthetic gene

profiles have been investigated.

High throughput sequencing, de novo transcriptome assembly

and quantification technologies are continually improving (Grab-

herr et al., 2013; Patro et al., 2017) making it possible to quantify

transcript expression with high precision in non-model species,

even when a reference genome sequence is not available.

Furthermore, the 30 mRNA sequencing technology enables the

generation of gene expression profiling data for hundreds of

samples with high precision and reasonable cost (Kremling et al.,

2018; Moll et al., 2014; Tzfadia et al., 2018). Here, we generated

full-length transcript RNA sequences for developing seed of the

oat cultivar Ogle-C (cv. Ogle-C) using both Illumina HiSeq 2000

and MiSeq sequencing platforms, together with QuantSeq 30

mRNA sequencing data of developing seeds from 22 oat cultivars

in two environments across six developmental time points. Our

objectives were to (i) generate a high-quality and comprehensive

de novo oat seed transcriptome; (ii) identify global temporal gene

expression patterns and reveal biological processes behind them;

(iii) estimate heritabilities of identified temporal gene expression1

sets and evaluate their potential usefulness in plant breeding; and

(iv) describe the temporal expression patterns of Avns and lipid

biosynthetic genes.

Results

Validating the assembled oat transcriptome

The set of longest isoforms from each Trinity ‘gene’ consisted of

134,418 transcripts (Figure 1). We aligned the Trinity longest

isoform set against the Brachypodium distachyon

(UP000008810), Hordeum vulgare (UP000011116) and Triticum

aestivum (UP000019116) predicted proteomes (Uniprot 2019)

using NCBI blastx (Camacho et al., 2009), retaining 48,740

(36.26%) transcripts with at least one hit with an E-value < 10–

10. The remaining 85,678 transcripts were aligned to scaffolds of

the hexaploid oat genome v1.0 (Avena sativa v1.0, http://avenage

nome.org/) using GMAP (Wu and Watanabe, 2005); 71 982

(53.55%) transcripts aligned with >85% identity and >85%
coverage and 13 696 (10.19%) not aligning. The unaligned

transcripts were queried using NCBI blastx against UniRef100 at

E-value < 10–3. 3879 transcripts were found to have at least one

match, with 918 transcripts mapping to Viridiplantae (green

plant) proteins and the remaining 2961 transcripts mapped to

non-Viridiplantae proteins. The 2961 transcripts were excluded in

the downstream analysis due to likely contamination. Therefore,

our final representative transcriptome assembly (RTA) contained

131 457 transcripts (Appendix S1).

Of 56 877 (42.27%) and 27 278 (20.75%) transcripts of the

RTA were longer than 500 and 1000 nucleotides (nt), respectively

(Table 1, Figure S1). The N50, median and average transcript

lengths were 1205, 433 and 757 nt, respectively. The RTA sums

to a 99 539 633 nt assembly length.

We used the BUSCO (Waterhouse et al., 2018) database to

validate representation of protein-coding sequences in the RTA.

Using the BUSCO plants set (embryophyta_odb9), 1212 of the

1440 BUSCO genes were complete in the RTA with 1188 genes

single copy and 24 duplicated (Table S1); 148 BUSCO genes were

fragmented and 80 were missing (10.3% and 5.5% of the total,

respectively).

Principal components analysis (PCA) of samples

Developing seeds of 22 cultivars (Table S2) were collected at 8,

13, 18, 23, 28 and 33 days after anthesis (DAA) and expression

abundances determined using 30 mRNA QuantSeq (Moll et al.,

2014). Of the 528 potential samples (22 lines x 6 time points 9 2

sites 9 2 replicates), we successfully sampled 419. From these

419 samples, 22 with <0.5 million mapped reads and 71 642

(53.30%) transcripts with less than two mapped reads in at least

ten samples were removed. After this filtering, 397 samples

(59 815 transcripts) were retained (Appendix S2). We performed

PCA based on 500 transcripts with the highest variance. The

second principal component separated the 397 samples into two

distinct clusters with 71 and 326 samples (Figure S2). We could

not identify the cause of this clustering. The PCA of the 326

samples showed the first principal component, explaining 64% of

the variance, was driven by sampling time (Figure 2). Within the

326 samples, the average Pearson correlation coefficients of

biological replicates were 0.874, 0.884 and 0.875 from green-

house samples, field samples and among samples across the sites

(Figure S3), respectively.

Pairwise correlation of transcript expression and number
of differentially expressed transcripts (DETs) between
adjacent time points

Using the 326 samples, we performed pairwise correlation

analysis and differential gene expression analysis between time

points (Appendix S3). This analysis showed high correlation

between adjacent time points, with decreasing correlation as time

increased (Figure 3a). For example, the transcriptome expression

of 8DAA had correlation coefficients of 0.959, 0.917, 0.817,

0.781 and 0.777 at 13DAA, 18DAA, 23DAA, 28DAA and

33DAA, respectively. This analysis also splits the six time points

into two groups. Transcriptome expression at 8DAA, 13DAA and

18DAA showed higher correlation with each other than with later

time points. Likewise, expression at 23DAA, 28DAA and 33DAA

showed higher correlation than with earlier time points. The

lowest correlation between adjacent time points happened

between 18DAA and 23DAA.

Differentially expressed transcripts analysis between adjacent

time points showed that the greatest number of DETs occurred

between 18 and 23 DAA and lowest number of DETs occurred

between 28 and 33 DAA (Figure 3b). The maximum DETs

occurred between early and middle stages of development, with

many fewer DETs observed at later stages. We observed 8986

DETs between 8 and 13DAA, of which 4805 were also differen-

tially expressed between 13 and 18DAA, while 8477 distinct

transcripts were differentially expressed between 13 and 18DAA.

1The term gene expression is used to indicate transcript abundance in

this study.
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Gene category (GO) over-representation analysis for
DETs between adjacent time points

For DETs identified in each time interval, GO enrichment analysis

(Appendix S4) was performed with all transcripts having at least

one GO term as background set (Young et al., 2010). The time

interval of 13-18DAA had the highest number of over-repre-

sented GO categories at a false-discovery rate (FDR) adjusted P-

value of 0.01 across all three domains of biological process,

cellular compartments and molecular function (Figure S4), fol-

lowed by 8-13DAA and 18-23DAA. Few GO categories were

over-represented at 23-28DAA and 28-33DAA.

Generally, different GO categories were enriched for different

time intervals, indicating the changing landscape of underlying

processes. The common over-represented GO categories found

between time intervals 8-13DAA and 13-18DAA were mainly

related to peptide biosynthesis, amide biosynthesis and transla-

tion (Figure S4a). The common over-represented GO terms

between time intervals of 13-18DAA and 18-23DAA related

mainly to photosynthesis (Figure S4a, c). Oxidation–reduction
(GO:0055114) was over-represented in all time intervals except

28-33DAA (Figure S4a), which is the very end of the sampled

seed development stage. In contrast, nutrient reservoir activity

(GO:0045735) was over-represented only in 28-33DAA (Fig-

ure S4c).

Global temporal co-expression (TCoE) patterns

We used 25 971 total DETs between five pairs of adjacent time

points to explore global TCoE patterns. Transcripts were clustered

according to differential expression patterns. In theory, there are

35 = 243 possible expression patterns considering that there are

three states (up-regulated, down-regulated and no change) in

each of the five time intervals. We observed only 80 expression

patterns (Figure S5) with a very skewed frequency such that the

top 20 patterns contain 91% of the transcripts (Figure 4). A

permutation test including 1000 permutations to simulate the

null hypothesis that expression change in one time period is

independent of that in other time periods showed a minimum

number of 91 expression patterns compared with the observed

80 patterns and a maximum of 84% of transcripts in the top 20

patterns compared with the observed 91% of transcripts. Relative

Trinity longest isoform set (134 418)

Aligned (48 740) Unaligned (85 678)

Aligned (71 982)

Searched against UniRef100

Unaligned (13 696)

Aligned (3879)Unaligned (9817)

Viridiplantae proteins
(918)

Non-Viridiplantae proteins
(2961)

Searched against Brachypodium distachyon Proteome (UP000008810)
Searched against Hordeum vulgare Proteome (UP000011116)
Searched against Triticum aestivum Proteome (UP000019116)

Aligned to scaffolds of oat genome v1.0 
GMAP(identity > 85%, coverage > 85%)

NCBI Blastx
(E-value < 1e-10)

NCBI Blastx
(E-value < 1e-3)

Figure 1 Results of aligning the assembled oat

seed transcriptome against reference proteomes

of oat relatives, scaffolds of the hexaploid oat

genome v1.0 and the UniRef100.

Table 1 Statistics of transcriptome assembly and BUSCOs plants set

assessment

Transcriptome assembly statistics

Total transcripts 131 457

Transcripts (≥500 nt) 56 877

Transcripts (≥1000 nt) 27 278

Contig N50 (nt) 1205

Median contig length (nt) 433

Average contig length (nt) 757

Total assembled bases (nt) 99 539 633

BUSCO Statistics Number of genes (%)

Complete BUSCOs 1212 (84.2%)

Complete and single-copy BUSCOs 1188 (82.5%)

Complete and duplicated BUSCOs 24 (1.7%)

Fragmented BUSCOs 148 (10.3%)

Missing BUSCOs 80 (5.5%)

Total BUSCO groups searched 1440

nt, nucleotides; PE, paired-end.
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Figure 2 PCA plot of 326 samples with more than 0.5 million mapped

reads based on the 500 transcripts with highest variance.
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to the permutation test, we observed far more transcripts whose

expression changed in only one direction (either only going up or

only going down over time) than would be expected: about

79.7% of observed DETs change in only one direction compared

with a null hypothesis expectation of 50.0%. Among transcripts

whose expression did reverse directions, we observed fewer

transcripts going first down then up (41.8%) than expected

(45.7%). Both deviations were beyond the maxima from 1000

permutations of the null hypothesis. Changes of state that

included 13DAA or 18DAA were associated with the 6 largest

(15 249, 58.72% DETs associated) patterns, where one-step-up-

at-18DAA (n = 5006) and one-step-down-at-18DAA (n = 2885)

were the largest. Interestingly, we found transcript numbers in

symmetrical expression patterns to be similar. For example, the

expression pattern of one-step-up-at-8DAA (Top-8) is symmetri-

cal to one-step-down-at-8DAA (Top-10), and they contain a

comparable number of transcripts (928 and 878, respectively).

We also found that the number of transcripts in an expression

pattern was predicted by the number of differential expression

events in the pattern (e.g. ‘one-step-up-at-8DAA (Top-8)’, ‘up-at-

13DAA-down-at-18DAA (Top-19)’ and ‘three-steps-up-at-8DAA

(Top-9)’ have one, two and three differential expression events,

respectively, Figure S6). Thus, the number of transcripts in an up-

regulated pattern was well explained by the number of transcripts

in its symmetrical down-regulated pattern and by its number of

differential expression events.

Gene ontology analysis for identified TCoE sets

For the groups of genes identified by temporal clustering, 8 of the

22 patterns exhibited significant GO enrichment (Figure S7). The

one-step-down-at-8DAA (Top-10) pattern exhibited GO enrich-

ment for tRNA aminoacylation (protein translation), amino acid

activation and tRNA aminoacylation. Two-steps-down-at-8DAA

(Top-15) was associated with cellular localization and intracellular

protein transport processes. GO terms enriched for the three-

steps-down-at-8DAA (Top-7) included nucleosome assembly and

protein–DNA complex assembly-related processes. GO terms

enriched for the one-step-up-at-13DAA (Top-3) included a group

of complex processes related to peptide biosynthesis, translation,

rRNA and ncRNA processing/metabolic and nucleic acid metabolic

processes. GO terms enriched for the two-steps-up-at-13DAA

(Top-5) included a group of processing/metabolic procedures

related to rRNA, ncRNA, mRNA and tRNA. GO terms enriched for

the two-steps-down-at-13DAA (Top-4) included a group of

processes related to photosynthesis. GO terms enriched for the

one-step-up-at-18DAA (Top-1) included a group of processes

related to regulation of biological process, gene expression,

cellular process and metabolic process. GO terms enriched for the

up-at-step-8DAA-down-at-13DAA (Top-17) related to regulation

of photosynthesis.

Heritability estimation of the 22 TCoE sets

As we had both temporal and genetic breadth in our design, we

estimated the heritability of our transcriptome, a novelty

compared to previous studies (Li et al., 2014, 2018; Wan

et al., 2008; Yi et al., 2019; Zhang et al., 2016). Within a TCoE

set, we asked two questions: (i) which transcripts are strongly

correlated with each other across genotypes such that they are

similarly affected by genetic background? and (ii) is sufficient

variation in transcript expression explained by genotype so that

it potentially can be manipulated by plant breeders to change

oat seed composition?

With these aims, we created subclusters (varying in number

from 4 to 13) within each TCoE set based on the adjusted gene

expression matrix of the full set of 397 samples with more than

half million mapped reads (see Methods for details). We termed

such subclusters genetic co-expression (GCoE) sets. Within each

GCoE set, we calculated the PC1 score for each of the 22 oat lines
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and estimated the additive genetic variance of that score. We

applied the same procedure to 50 permuted data sets. Heritabil-

ities estimated from GCoE sets of the 22 TCoE sets (real data)

were much higher than those estimated from permuted data sets

(Figure 5). A majority of TCoE sets had highly heritable GCoE sets.

Fifteen TCoE sets had GCoE sets with median heritablity

exceeding 0.75; two had median heritabilities of GCoE sets

between 0.5 and 0.75; three had median heritabilities of GCoE

sets between 0.25 and 0.50. Two TCoE sets had GCoE sets with

median heritability <0.25.
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To test whether the distribution of GCoE set sizes of the 22

TCoE sets differed from that expected under the null distribution,

we performed permutation analyses. We calculated Mahalanobis

distance of cluster sizes from 1000 permutations to generate a

Mahalanobis distance distribution of each permutation from the

mean. We then calculated the Mahalanobis distance of the

cluster size vector of the non-permuted expression matrix to the

mean of permutation-based Mahalanobis distances and tested it

using a standard chi-squared test, since the squared Mahalanobis

distance follows a chi-squared distribution (Brereton, 2015;

Wicklin 2012). None of the 22 TCoE sets deviated from the null

distribution constructed from permuted data sets at significant

level of 0.05 after Bonferroni correction (Table S3).

Correlation between transcript expression patterns and
metabolites

To examine whether the transcript expression patterns associated

with metabolite abundance, we applied a simple linear regression

to detect the relationship between 634 metabolites (each with

heritability >0.4) of mature seeds and PC1 scores of GCoE sets.

The 634 metabolites included 9 fatty acids, 199 and 426

metabolite features obtained from targeted GC-MS, non-tar-

geted GC-496 MS and non-targeted LC-MS analyses, respec-

tively. For almost all the GCoE sets, we found the p-values from

real data were much lower than that obtained from permutations

(Figure S8).

Temporal transcript expression pattern of Avns and lipid
biosynthetic genes

Two of the compositional features that distinguish oats from

other cereals are high lipid levels and the multifunctional Avns.

We identified transcripts with sequence similarity to biosynthetic

genes for both pathways (Table S4). All of our candidates showed

long alignment length and high percentage of identity to their

reference sequences, and each had a high number of mapped

reads across all samples except FAD3, which was excluded in

expression pattern analysis.

CCoA3H, CCoAOMT and HHT are three key genes for Avns

biosynthesis (Collins, 2011). The CCoA3H gene was up-regulated

from 8DAA (Figure 6a), reaching a peak either at 13DAA or

18DAA depending on genotype and then declining, and reaching

a plateau at 23DAA or 28DAA. The CCoAOMT gene showed a

similar expression pattern to that of the CCoA3H, but with more

variation between genotypes. Expression of the HHT gene moved

up and down within a relatively small range across all time points,

but did not show a clear expression pattern common across all

genotypes.

Key genes involved in fatty acid biosynthesis showed several

different expression patterns (Figure 6b). Expressions of ACCase,

FAB2, FAE1/KCS18, FATB, PDAT1 and WRI1 started to decline

from 8DAA and reached a plateau either at 23DAA or 18DAA

(WRI1). Expressions of DGAT1/TAG1, FAB1/KAS2, LPCAT1 and

PAH1 started to decline at 8DAA, reached a valley at 18DAA and

rose to a plateau at 23DAA. Expression of the FAD2 gene started

to rise at 8DAA, reached a peak at 13DAA and declined after

13DAA until reaching a final plateau at 23DAA. The GPAT9 gene

showed different expression patterns between genotypes, but

most genotypes started to decline at 8DAA, then rose after

13DAA and reached a final plateau at 23DAA.

Discussion

Transcriptome assembly validation and quality
evaluation

A common issue for de novo transcriptome assembly is that while

there aremany transcripts in the initial assembly, there is no optimal

approach to filter them. A number of studies have used the longest

isoform (Gutierrez-Gonzalez, Tu, et al., 2013;Hirsch et al., 2014). In

this study, we started with the longest isoform set (n = 134 418)

and found 90.5% of it could be aligned to oat relatives

(n = 48 740), oat genome scaffolds (n = 71 982) or Viridiplantae

proteins (n = 918, Figure 1). However, 9817 (7.3%) transcripts

could not be aligned to any of these. Hypotheses to explain non-

alignment are that they were too small to align to a protein in

UniRef100 (Figure S9), were non-coding RNA and were sequence

unique to oat or Ogle-C-specific transcripts missing in the oat

genome v1.0. There was no good reason to filter them out, so we

included them in our RTA for the downstream analyses.

Various methods have been proposed to assess the quality of

transcriptome assemblies. BUSCO has been considered the gold

standard to evaluate completeness of genome assembly for

transcriptome assembly (Sim~ao et al., 2015). The BUSCO plant set

(embryophyta_odb9) evaluates assembly content by searching

the assemblies for 1440 conserved single-copy orthologs found in

at least 20 of 31 plant species (Waterhouse et al., 2018). Of

those, 1212 (84.2%) BUSCO plant genes were found to be

complete in our RTA, which indicates a high level of overall

coverage for our transcriptome assembly. Our data set is a

substantial improvement over the first oat seed transcriptome

assembly (Gutierrez-Gonzalez, Tu, et al., 2013), which only

included 412 (28.7%) complete BUSCO plant genes (Table S1).

Based on the expression profiles of 12 HiSeq samples of cv. Ogle-

C whose developing seeds were collected at 7, 14, 21 and 28

DAA with three biological replications each, we were able to

assign all 12 samples into four clusters corresponding to the four

sampling times (Figure S10), and the average correlation among

biological replicates was 0.97 (Figure S11). Finally, we evaluated
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the quality of our transcriptome assembly by searching the RTA

for Avns and lipid biosynthetic genes homologous to other oat

cultivars or other species. All three genes of CCoA3H, CCoAOMT

and HHT involved in Avns biosynthetic pathways were found to

have high similarity to their reference sequences from Arabidop-

sis, Brachypodium distachyon or other oat cultivars (Table S4).

Twelve key genes involved in fatty acid biosynthesis were found

to have high-quality homologs in the RTA, with the alignment

length ranging from 825 bp to 7598 bp and the per cent identity

ranging from 72.8% to 88.7%. For the ACCase gene, the

B. distachyon reference sequence was 8783 bp, and the homol-

ogous transcript found in the RTA was 7812 bp with alignment

length of 7598 bp and per cent identity for the alignment region

of 88.7%. In summary, we created a high-quality and compre-

hensive transcriptome assembly, which is reliable for downstream

analysis.
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Important biological processes underlie different oat
seed development stages

In Arabidopsis seed development, major accumulation of storage

proteins occurs between 5 and 13 days after flowering (Ruuska,

2002). In maize, Li et al. (2014) found that DGE in early seed

development (0–10 DAA) related to storage protein preparation.

In wheat grain development, Wan et al. (2008) identified storage

protein transcripts most abundant at around 14 DAA. In our

study, for the early stage of oat grain development (8–13 DAA

and 13–18 DAA), the dominant biological process ontologies

enriched included peptide biosynthesis, amide biosynthesis,

organonitrogen compound biosynthesis and translation, which

are all relevant to protein synthesis. This suggests that oat seed

storage proteins also accumulate at early grain development

stages between 8 and 18 DAA.

Li et al. (2014) observed rRNA- and ncRNA-related biological

process ontologies enriched in early developing kernels of maize

(0–10 DAA). We found rRNA- and ncRNA-related biological

process ontologies enriched between 13 and 18 DAA, which

indicates that rRNA and ncRNA processing procedures might also

be important between 13 and 18 DAA in oat.

Expression of photosynthetic genes peaked at 11 days after

flowering in Arabidopsis developing seeds (Ruuska, 2002).

Photosynthesis is the dominant biological process ontology

identified at 14 DAA in wheat grain development (Rangan

et al., 2017). Expression of 20 of 29 (68.97%) photosynthesis-

related genes peaked at 8 DAA in developing barley grains (Bian

et al., 2019). Here, photosynthesis-related GO terms were

enriched in time intervals of 13–18 DAA and 18–23 DAA, which

suggests immature oat seeds at early and middle development

stages contain functional chloroplasts capable of photosynthesis

during grain filling.

A GO category of nutrient reservoir activity was found enriched

between 28 and 33 DAA, which suggested the importance of

nutrient accumulation and storage at the late seed development

stage. This GO term was also found to be enriched at storage

phase of barley seed development (Bian et al., 2019).

Canalization and genetic differentiation of transcription

Given the 58 120 transcripts measured in the 30 QuantSeq assay,

we find it remarkable that only 494 showed a time by genotype

interaction at an FDR of 0.1. While it is unclear how to formulate

a null hypothesis against which to test this number, the fact that

it is <1% of the transcripts suggests that temporal dynamics of

expression are tightly controlled and canalized across genotypes.

The seed is the sole vehicle for the survival of an annual from one

year to the next. It stands to reason, therefore, that its

composition, as affected by the temporal sequence of gene

expression and therefore enzymatic activity, is important to

fitness. A characteristic the analysis revealed about seed gene

expression is that it is unimodal: about 92% of transcripts

showing differential expression had only one peak of expression

over the development of the seed. In other words, only 8% of

transcripts showed first a significant drop followed by a signif-

icant rise in expression which would lead to expression peaks in

distinct early and late periods of seed development. Only one of

the top 22 clusters showed this pattern (Top-20 with 252

transcripts), and no gene ontology terms were enriched in this

cluster.

While the temporal expression patterns appeared conscribed,

our data also offered the possibility of exploring genetic variability

in expression. To explore genetic variation, we further clustered

transcripts in each TCoE set according to their co-expression

across oat lines, allowing us to test the heritability of such genetic

co-expression sets. We observed that for 17 of the 22 TCoE sets,

median heritabilities of GCoE sets were above 0.50. Particularly,

for 6 of the 22 temporal co-expression sets, heritabilities of GCoE

sets were close to 1. The high heritabilities of GCoE sets arise for

the following reasons: (i) within a GCoE set, profiles of transcripts

are highly correlated and with almost the same shapes across

genotypes, so the majority of variation in expression profiles is

expected to be explained by variation of genotypes; (ii) PC1 was

used to characterize a GCoE set, which reduced noise from

individual transcript expression profiles (Krafft et al., 2011).

We further found heritabilities of GCoE sets estimated from

our real data set were much higher than those estimated from

permuted data sets (Figure 5). Moreover, after Bonferroni

correction, none of the 22 temporal co-expression sets had a

cluster size distribution significantly different from that of a null

distribution obtained by permution (Table S3). Completing the

causal chain from genotypes to transcribed genes to metabolomic

phenotypes, we showed that for the overwhelming majority of

GCoE (106 GCoE identified across 22 TCoE, Figure S8), transcript

levels correlated with metabolite levels. Given the relatively small

number of oat lines we worked with, statistical power to identify

specific transcript to metabolite correlations was too low to

overcome the multiple testing burden. Nevertheless, these

correlations suggest the groups of genes we observed at

temporally co-regulated clusters are biologically meaningful and

represent useful groups of traits that breeders will able to select

upon to manipulate oat seed composition to more desirable

endpoints.

Temporal transcript expression patterns of Avns and
lipid biosynthetic genes

Avns are produced in both vegetative tissues and grain (Mat-

sukawa et al., 2000; Peterson and Dimberg, 2008; Wise, 2017).

Enzymes involved in the biosynthetic pathway of the avenan-

thramides include CCoA3H, CCoAOMT and HHT (Collins, 2011;

Yang et al., 2004). HHT is the final enzyme in the biosynthetic

pathway. Little research has been conducted on gene expression

of the three enzymes in oat. Activity of the final biosynthetic

enzyme, HHT, has been found in dry seeds (Bryngelsson et al.,

2003; Matsukawa et al., 2000). Temporal dynamics of HHT

activity were investigated in spikelets containing developing grain

using nine field-grown cultivars (Peterson and Dimberg, 2008).

Most cultivars showed a trend of increasing activity during

maturation; however, the HHT activity peaked at different times

and had high variation at final harvest among cultivars (Peterson

and Dimberg, 2008). Similarly, in our study, we did not observe a

clear common gene expression pattern across all 22 genotypes

for the HHT gene, although both CCoA3H and CCoAOMT

showed a similar expression pattern over maturation across most

of cultivars. This might be attributed to the complex role the HHT

enzyme plays in biosynthesis of Avns, as it is involved in three

different pathways and catalyses the biosynthesis of several

different Avns (Collins, 2011).

In wheat and barley grains, oil accounts for 2%–3% of seed

dry weight (Barthole et al., 2012). In contrast, oat grains are

relatively rich in oil, which can vary from 3% to 11% of grain

weight in different cultivars (Bana�s et al., 2007; Liu, 2011), with

breeding lines containing up to 18.1% (Frey and Holland, 1999).

In most cereal grains, oil is mostly stored in the form of
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triacylglycerols (TAGs, esters of fatty acids and glycerol) within the

embryo. However, the majority of oat lipids (86%–90%) are

found in the endosperm, and up to 84% of the lipids are

deposited during the first half of seed development, when seeds

are still immature with a milky endosperm (Bana�s et al., 2007).

Little research has been done on temporal expression of genes

related to oil storage in cereals. In the barley embryo, most lipids

were deposited between 12 and 22 DAA, and the temporal

expression profile of the oleosin 2 transcript constantly increased

between 8 and 22 DAA and declined thereafter (Neuberger et al.

(2008). However, we observed most lipid synthesis genes had

high expression level at 8 DAA and then were down-regulated,

maintaining a low expression level after 23 DAA. This is distinct

from barley lipid synthesis gene expression, but consistent with

findings of Bana�s et al. (2007) that most oat lipids were deposited

at early and middle stages of seed development.

Experimental procedures

Sample collection, RNA extraction, cDNA construction,
Illumina sequencing of oat cultivar Ogle-C and
transcriptome de novo assembly

The oat (A. sativa L.) genotype used for de novo transcriptome

assembly was Ogle-C, derived from a single plant reselection of

the cultivar ‘Ogle’ (Fox et al., 2001). Developing dehulled seeds,

collected at 7, 14, 21 and 28DAA (Gutierrez-Gonzalez, Wise,

et al., 2013), were the source of RNA. Two sets of libraries were

constructed. First, libraries were constructed from RNA of all

three biological replications from the four developmental stages

(12 libraries, Appendix S5) and sequenced in paired-end mode

with 100 cycles on the Illumina HiSeq 2000 machine as described

previously (Gutierrez-Gonzalez et al., 2013). Second, longer reads

were generated from a library constructed from a pool of RNA

from the 4 developmental stages as described previously

(Gutierrez-Gonzalez and Garvin, 2017) and sequenced on the

Illumina MiSeq� platform using v3 chemistry generating 300 nt

paired-end sequences (Appendix S6). Trimmomatic version 0.36

(Bolger et al., 2014) was used to remove the first 12 nt, Illumina

Truseq adaptor remnants and bases with an average quality

within 4-bp sliding windows below a base quality value threshold

of 20. A read was removed from the data set if it was shorter

than 81 nt for HiSeq-generated sequenced and 181nt for MiSeq

sequences, respectively. Trimmed paired-end reads were assem-

bled using Trinity v2.8.4 (Grabherr et al., 2013) with default

parameters.

Validation of the de novo transcriptome assembly

We started with the longest isoform set from each Trinity ‘gene’

(Figure 1). The longest isoform set was then aligned against the

Brachypodium distachyon (UP000008810), Hordeum vulgare

(UP000011116) and Triticum aestivum (UP000019116) predicted

proteomes using NCBI blastx 2.7.1 (Camacho et al., 2009) with

an E-value cut-off of <10–10. Trinity transcripts without any blast

hits were aligned to the oat genome v1.0 (Avena sativa v1.0,

http://avenagenome.org/, consisting of 63 455 scaffolds lacking

annotation) using GMAP version 2018-07-04 (Wu and Watan-

abe, 2005) with parameter settings of >85% coverage and >85%
identity and all other parameters at default values. The unaligned

Trinity transcript sets were searched against the UniRef100

database (Release: 2018_10, 07-Nov-2018) using NCBI blastx

2.7.1 with an E-value cut-off of <10–3. For the transcripts that did

not align to the draft oat genome, we extracted the best hit for

each query sequence from the UniRef100 alignments and used

taxonomic information to identify potential contaminant

sequences. To assess the completeness of the oat transcriptome

we evaluated the RTA using the BUSCO toolkit (Waterhouse

et al., 2018) using the Plantae lineage-specific single-copy

orthologs (embryophyta odb 9) consisting of 1440 single-copy

orthologs.

Experimental design, sample collection, 30 RNAseq
library construction, sequencing and metabolites
chemical analysis of 22 oat lines

In 2016, we planted in the field and greenhouse 24 lines

(Table S2) selected by clustering an oat diversity panel of 500 lines

into 24 groups based on genotype and choosing the centroid of

each cluster. This method of selection caused the lines to have

low relatedness to each other, resulting in a genomic relationship

matrix close to being diagonal (Figure S12).

In both trials, a randomized complete block design (RCBD) with

two replicates was used (Table S5). Individual spikelets were

tagged at anthesis, and 10 spikelets were collected at 8, 13, 18,

23, 28 and 33 DAA. Primary florets were quickly dehulled on dry

ice, then placed in liquid nitrogen and transferred to �80C

freezer for storage. Two of the 24 lines without developing seeds

collected at both sites were excluded. Of the 22 lines 9 6 time

points 9 2 sites 9 2 replicates = 528 possible samples, 419

samples with sufficient seed were randomly assigned to five 96-

well plates for RNA extraction and 3’ RNAseq library construction

using the same procedure as described by Kremling et al. (2018)

at the Cornell University Sequencing facility. Pooled libraries were

sequenced using Illumina NextSeq500 and HiSeq2000 with a

150 nt single-end run, v2 chemistry (Appendix S7).

After harvest, mature seeds were dehulled and analysed with

gas chromatography–mass spectrometry (GC-MS) and liquid

chromatography–mass spectrometry (LC-MS) at the Proteomics

and Metabolomics Facility at Colorado State University following

Carlson et al. (2019).

Quality trimming 30 RNAseq reads, transcript
quantification and DGE analysis

BBMap version 37.50 (BBMap—Bushnell B.—sourceforge.net/

projects/bbmap/) was used to remove adapter contamination,

polyA sequences and low-quality sequences following a standard

protocol described by Lexogen, Inc (QuantSeq User Guide) with

slightly modified parameter settings of trimq = 20, maq = 20 and

minlen = 50 to retain reads with a minimum per base sequence

quality score of 20 and minimum length of 50 nucleotides. After

read quality control, expressed abundances were determined

using Salmon version 0.12.0 (Patro et al., 2017) and the RTA with

default parameters. Samples with <0.5 million mapped reads and

transcripts with less than two counts in at least ten samples were

filtered out, leaving 59 815 transcripts for analysis. The filtered

read count matrix was normalized by sequencing depth with a

sample-specific size factor implemented in DESseq2 version

1.22.2 (Love et al., 2014). A PCA of samples was performed

based on variance-stabilized expression estimates using the vst

function in DESeq2 package. The sample PCA plot showed two

distinct clusters. We performed differential transcript expression

analysis based on the major cluster of 326 samples (58 120

transcripts left after filtering those with less than two counts in at

least ten samples) using the DESseq2 package. First, we

performed a likelihood-ratio test by comparing a full model

(~genotype + time + genotype:time) against a reduced model
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(~genotype + time) to filter out transcripts showing a significant

genotype-by-time interaction at FDR level of 0.1. This filter

removed 424 transcripts, leaving 57 694 for subsequent analyses.

We performed a DGE analysis to identify transcripts differen-

tially expressed between time points by controlling for the effect

of different genotypes at FDR level of 0.05 using the standard

method implemented in DESeq2 package. In order to understand

how transcriptome expression correlated between time points,

we averaged DESeq2 normalized read counts across samples

within each time point for each transcript separately and then

applied a pairwise Spearman’s correlation analysis between time

points. To identify global transcript expression patterns across

time points common in all 22 oat lines, we constructed gene

expression pattern sets consisting of DETs between any two

adjacent time points. Based on the differential gene expression

analysis results between any two adjacent time points, we

partitioned all DETs in a single time interval into three categories

including up-regulated, down-regulated and not differentially

expressed, which were coded as ‘u’, ‘d’ and ‘0’, respectively. In

this way, the expression pattern of each DET was coded as a

string of five characters for the five time intervals. Finally,

transcripts were classified into different temporal expression

patterns based on their expression pattern codes.

Heritability estimation of identified TCoE sets and simple
linear regression between metabolites and GCoE sets

Variance components and heritability estimates of GCoE sets

were based on the DESeq2 variance-stabilized expression matrix

with 397 samples and 59,815 transcripts after adjustment. We

used the surrogate variable analysis (Leek et al., 2012) to get an

estimate of latent factors, and then, the first latent factor was

used to adjust for unwanted variation using the removeBatch-

Effect function implemented in R package limma (Ritchie et al.,

2015). For each transcript separately, the least square means

(lsmean) of expression values of the 22 lines were estimated by

the linear model ~Line + Location + Location/Replication + Time,

generating an lsmean expression matrix. For each TCoE set,

hierarchical clustering was used to partition transcripts into 4 to

20 subclusters based on the Euclidean distance of the lsmean

expression matrix. The optimized number of subclusters of each

TCoE set was determined by selecting the number of clusters that

made heritabilities of all subclusters relatively high and with low

variation. Using a TCoE set-dependent and optimized number of

subclusters is better than a uniform arbitrary number of subclus-

ters applied to all TCoE sets because it allows different TCoE sets

to have different genetic background partitions. For each GCoE

set, PCA was applied to the lsmean expression matrix defined by

the transcripts in that set, and scores of the first PC were

extracted for the 22 oat lines. We fit nested models and

performed a likelihood-ratio test: a full model, PC1score

~l + Zu + e and a reduced model, PC1score ~l + e. In the full

model, the random term u estimated the oat line additive effect

with u ~ N(0, K r2u), where K was the genomic relationship matrix

among the 22 oat lines (Figure S12) and r2u was the estimated

additive genetic variance. For both models, the residual was

distributed as e ~ N(0, I r2e ), with I being an identity matrix. The

heritability was estimated as r2u=ðr2u þ r2eÞ.
To test rigorously whether the observed distribution of cluster

sizes deviated from its expectation under the null distribution, we

used permutation testing. For a given TCoE set, expression of all

genes was permuted relative to each other. The permuted matrix

was then clustered to form eight clusters and the clusters ordered

by size, but always dropping the smallest cluster. Permutation and

clustering were repeated 1000 times. The mean and covariance

matrix among permuted cluster sizes were used to calculate the

Mahalanobis distance of the non-permuted cluster size vector

from the mean, and a corresponding p-value was calculated

based on a chi-squared distribution with 7 degrees of freedom

(Brereton, 2015; Wicklin 2012). This procedure was repeated for

each of the 22 TCoE sets.

Of 10 fatty acids, 282 and 529 metabolite features were

obtained from targeted GC-MS, non-targeted GC-MS and non-

targeted LC-MS analyses of mature seeds harvested from the two

sites. A standard linear mixed model (~Line + Location + Loca-

tion/Replication + Location: Line) of the RCBD design was fitted

for each metabolite using R package lme4 (Bates et al., 2015),

with all terms treated as random. The heritability was estimated

as r2LINE= r2LINE þ r2LOCATION:LINE=2þ r2e=4
� �

. The metabolites with

heritability >0.4 were used as response variable in a simple linear

regression with PC1 scores of each GCoE set as predictor. To

compare the p-value obtained from real data against random

sampling, for each metabolite and transcript abundance regres-

sion, we performed 100 permutations of PC1 scores of each

GCoE set. Finally, p-values from permutation and non-permuta-

tion analyses were plotted.

Transcriptome annotation and GO analysis

Functional annotation of the RTA was done following a standard

workflow implemented in Trinotate v3.1.1 (Bryant et al., 2017),

which provided a comprehensive annotation including GO

annotation assigned to each gene. To understand the biological

functions behind the DETs between adjacent time points and

those transcripts clustered to different temporal expression

patterns, GO category over-representation analysis was per-

formed using all transcripts of the RTA having at least one GO

term as a background set with the R package of goseq v1.34.1

(Young et al., 2010). Over-represented GO categories that were

significant at FDR adjusted p-values of 0.01 were further plotted

using the R package ComplexHeatmap 1.20.0 (Gu et al., 2016).
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cv. Ogle-C.
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